
Chapter 9

Object-Oriented
programming

9.1 Intro

The “object approach”, which is the fundamental idea in the conception of C++
programs, consists in building the programs as an interaction between objects :

1. For all part of the program that use a given object, it is defined by the
methods you can use on it ;

2. you can take an existing object and add data inside and methods to ma-
nipulate it, this is call inheritance.

The gains of such an approach are :

1. Modularity : each object has a clear semantic (Employer or DrawingDevice),
a clear set of methods (getSalary(), getAge(), or drawLine(), drawCircle() ;

2. Less bugs : the data are accessed through the methods and you can use
them only the way to object’s creator wants you to :

3. Re-use : you can extend an existing object, or you can build a new one
which could be use in place of the first one, as long as it has all the methods
required (for example the Employer could be either the CEO or a worker,
both of them having the required methods but different data associated
to them. DrawingDevice could either be a window, a printer, or anything
else).

9.2. VOCABULARY 92

9.2 Vocabulary

• A class is the definition of a data structure and the associated operations
that can be done on it ;

• an object (equivalent to a variable) is an instanciation of the class, i.e.
an existing set of data build upon the model described by the class ;

• a data field is one of the variable internal to the object containing a piece
of data ;

• a method is a special function associated to a class.

9.3 Protected fields

Some of the data fields of a class can be hidden. By default, they are, and it’s
why we have used the public keyword in preceding examples. You can specify
explicitly some fields to be “hidden” with the private keywords :

class Yeah {

int a;

public:

int b;

double x;

private:

double z;

};

int main(int argc, char **argv) {

Yeah y;

y.a = 5;

y.b = 3;

y.x = 2.3;

y.z = 10.0;

}

/tmp/chose.cc: In function ‘int main(int, char **)’:

/tmp/chose.cc:2: ‘int Yeah::a’ is private

/tmp/chose.cc:12: within this context

/tmp/chose.cc:7: ‘double Yeah::z’ is private

/tmp/chose.cc:15: within this context

93 CHAPTER 9. OBJECT-ORIENTED PROGRAMMING

9.4 Methods

The class keyword allows you to associate to the data type you create a set
of methods with privileged access to the inner structure of the object. Those
functions must be seen as the actions you can do on your object. They are very
similar to standard functions, except that they are associated to a class and can
be called only for a given object.

class Matrix {

int width, height;

double *data;

public:

void init(int w, int h) {

width = w; height = h;

data = new double[width * height];

}

void destroy() { delete[] data; }

double getValue(int i, int j) {

return data[i + width*j];

}

void setValue(int i, int j, double x) {

data[i + width*j] = x;

}

};

9.5 Calling methods

As for fields, the syntax is either the dot-notation . or the arrow-notation -> :

int main(int argc, char **argv) {

Matrix m;

m.init(20, 20);

for(int i = 0; i<20; i++) m.setValue(i, i, 1.0);

m.destroy();

Matrix *q;

q = new Matrix;

q->init(10, 10);

for(int i = 0; i<10; i++) q->setValue(i, i, 1.0);

9.6. SOME MEMORY FIGURES 94

q->destroy(); // here we deallocate q->data but not q itself

delete q; // here we deallocate q itself

}

9.6 Some memory figures

Matrix *q;
q Matrix *

q = new Matrix;

q width

height

data

Matrix *

int

double *

int

q->init(10, 10);

...

q width

height

data

Matrix *

int

double *

int double

double

double

double

double

q->destroy();

...

q width

height

data

Matrix *

int

double *

int double

double

double

double

double

delete q;

...

q width

height

data

Matrix *

int

double *

int double

double

double

double

double

95 CHAPTER 9. OBJECT-ORIENTED PROGRAMMING

9.7 Separating declaration and definition

We have seen that we can separate the declaration (i.e. giving the name of the
function, its return type and the number and types of its parameters) and the
definition (i.e. the code itself).

For methods it’s the same, but we need a syntax to specify the class a function
belongs to (the same name can be used for member functions of different classes).
The syntax is <class name>::<function name>.

The methods identifier can be used alone in the member functions statement.

class Small {

int x;

public:

void setValue(int a);

};

class Bigger {

int x, y;

public:

void setValue(int a);

};

void Small::setValue(int a) { x = a; }

void Bigger::setValue(int a) { x = a; y = a*a; }

9.8 Protection of data integrity

This access through methods is very efficient to protect the integrity of data
and control the out of bounds errors :

class Matrix {

int width, height;

double *data;

public:

void init(int w, int h) {

width = w; height = h;

data = new double[width * height];

}

void destroy() { delete[] data; }

9.9. ABSTRACTION OF CONCEPTS 96

double getValue(int i, int j) {

if((i<0) || (i>=width) || (j<0) || (j>=height)) abort();

return data[i + width*j];

}

void setValue(int i, int j, double x) {

if((i<0) || (i>=width) || (j<0) || (j>=height)) abort();

data[i + width*j] = x;

}

};

9.9 Abstraction of concepts

This notion of matrix, and the associated method can also be used for a special
class of matrix with only ONE non-null coefficient. This matrix would allow
you to store one value at one location.

class MatrixAlmostNull {

int width, height;

int x, y;

double v;

public:

void init(int w, int h) { width = w; height = h; v = 0.0; }

void destroy() { }

double getValue(int i, int j) {

if((i<0) || (i>=width) || (j<0) || (j>=height)) abort();

if((i == x) && (j == y)) return v; else return 0.0;

}

void setValue(int i, int j, double vv) {

if((i<0) || (i>=width) || (j<0) || (j>=height)) abort();

if((v == 0.0) || ((x == i) && (y == j))) {

x = i;

y = j;

v = vv;

} else abort();

}

};

97 CHAPTER 9. OBJECT-ORIENTED PROGRAMMING

9.10 Constructors

In the preceding examples, we have used each time one function to initialize the
object and another one to destroy it. We know that for any object those two
tasks have to be done.

The C++ syntax defines a set of special methods called constructors. Those
methods have the same name as the class itself, and do not return results. The
are called when the variable of that type is defined :

#include <iostream>

#include <cmath>

class NormalizedVector {

double x, y;

public:

NormalizedVector(double a, double b) {

double d = sqrt(a*a + b*b);

x = a/d;

y = b/d;

}

double getX() { return x; }

double getY() { return y; }

};

int main(int argc, char **argv) {

NormalizedVector v(23.0, -45.0);

cout << v.getX() << ’ ’ << v.getY() << ’\n’;

NormalizedVector *w;

w = new NormalizedVector(0.0, 5.0);

cout << w->getX() << ’ ’ << w->getY() << ’\n’;

delete w;

}

The same class can have many constructors :

#include <iostream>

#include <cmath>

class NormalizedVector {

double x, y;

public:

NormalizedVector(double theta) {

x = cos(theta);

9.11. DEFAULT CONSTRUCTOR 98

y = sin(theta);

}

NormalizedVector(double a, double b) {

double d = sqrt(a*a + b*b);

x = a/d;

y = b/d;

}

double getX() { return x; }

double getY() { return y; }

};

9.11 Default constructor

A default constructor can be called with no parameters, and is used if you define
a variable with no initial value.

class Something {

public:

Something() {};

};

class SomethingElse {

public:

SomethingElse(int x) {};

};

int main(int argc, char **argv) {

Something x;

SomethingElse y;

}

compilation returns

/tmp/chose.cc: In function ‘int main(int, char **)’:

/tmp/chose.cc:13: no matching function for call to

‘SomethingElse::SomethingElse ()’

/tmp/chose.cc:8: candidates are:

SomethingElse::SomethingElse(int)

/tmp/chose.cc:9:

SomethingElse::SomethingElse(const

SomethingElse &)

99 CHAPTER 9. OBJECT-ORIENTED PROGRAMMING

9.12 Destructor

The symmetric operation is the destruction of objects. This is required as soon
as the object dynamically allocates other objects.

The special method defined to do that is called the destructor, and is called as
soon as the compiler need to deallocate an instance of the class. There is only
one destructor per class, which return no value, and has no parameter. The
name of the destructor is the class name prefixed with a ~.

We can now re-write our matrix class :

class Matrix {

int width, height;

double *data;

public:

Matrix(int w, int h) {

width = w; height = h;

data = new double[width * height];

}

~Matrix() { delete[] data; }

double getValue(int i, int j) {

if((i<0) || (i>=width) || (j<0) || (j>=height)) abort();

return data[i + width*j];

}

void setValue(int i, int j, double x) {

if((i<0) || (i>=width) || (j<0) || (j>=height)) abort();

data[i + width*j] = x;

}

};

9.13 Tracing precisely what is going on

#include <iostream>

class Something {

char *name;

public:

Something(char *n) {

name = n; cout << "Creating " << name << ’\n’;

9.14. THE MEMBER OPERATORS 100

}

~Something() { cout << "Destroying " << name << ’\n’; }

};

int main(int argc, char **argv) {

Something x("x"), y("y");

Something *z = new Something("z");

Something w("w");

{ Something v("v"); }

delete z;

}

Creating x

Creating y

Creating z

Creating w

Creating v

Destroying v

Destroying z

Destroying w

Destroying y

Destroying x

9.14 The member operators

We have seen that we can define our own operators. We can also define class
operators. Here we redefine the bracket operator, with one integer parameter.
By returning a reference to a value, the result of the [] operator is a lvalue, and
finally we can use those new arrays like standard arrays!

#include <iostream>

class OneDArray {

int size;

double *data;

public:

OneDArray(int s) { size = s; data = new double[size]; }

~OneDArray() { delete[] data; }

double &operator [] (int k) {

if((k < 0) || (k >= size)) abort();

return data[k];

}

101 CHAPTER 9. OBJECT-ORIENTED PROGRAMMING

};

int main(int argc, char **argv) {

OneDArray a(10);

for(int i = 0; i<10; i++) a[i] = 1.0/i;

for(int i = 0; i<10; i++)

cout << "a[" << i << "] = " << a[i] << ’\n’;

a[14] = 1.0;

}

displays :

a[0] = inf

a[1] = 1

a[2] = 0.5

a[3] = 0.333333

a[4] = 0.25

a[5] = 0.2

a[6] = 0.166667

a[7] = 0.142857

a[8] = 0.125

a[9] = 0.111111

Aborted

A simple vector class to illustrate the + operator redefinition. The passing by
reference is just used here to increase the performances by avoiding a copy. Note
that the precise meaning of the operation v + w is here v.(operator +)(w).

The = operator is implicitly defined by the compiler and just copies the two
field.

#include <iostream>

class TwoDVector {

double x, y;

public:

TwoVector() { x = 0; y = 0; }

TwoDVector(double a, double b) { x = a; y = b; }

TwoDVector operator + (TwoDVector &v) {

return TwoDVector(x + v.x, y + v.y) ;

}

void print() { cout << x << ’ ’ << y << ’\n’; }

};

9.15. SUMMARY FOR CLASSES 102

int main(int argc, char **argv) {

TwoDVector v(2, 3);

TwoDVector w(4, 5);

TwoDVector z;

z = v+w;

z.print();

}

displays 6 8.

9.15 Summary for classes

Properties of a class :

• Corresponds to a data-structure, defined with several data fields ;

• each data field has a type and an identifier ;

• data fields can be public or private ;

• a instantiation of a class is called an object and is the same as a variable ;

• methods are functions that can be applied to an object and have privi-
leged access to the data fields ;

• methods are called with either the . operator or the -> operator if we use
a pointer to an object ;

• constructors are special functions called when creating an instance of the
class, they do not return types and have for identifier the same identifier
as the class itself ;

• the destructor is a special method called when an object is destructed,
is has no return value and has for identifier the class name prefixed by a
~ ;

• we can also define member operators ;

• we can define method out of the class statement by using the <class name>::<member name>

syntax.

